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Abstract—Encryption methods adopted in TCP/IP based 

communications represent a challenge to traffic classification. 

This scenario has encouraged an evolution from classic techniques 

towards statistical flow-based approaches. In this work it’s 

proposed a solution based on a C5.0 Machine Learning Algorithm, 

as well as a hardware acceleration for its prediction stage. The 

accelerator is composed of parallel processing nodes capable of 

processing data from a streaming source in a pipelined fashion to 

use resources more efficiently and increase the achievable 

throughput. The results show that this system achieves a 

throughput 3 orders of magnitude higher than original C5.0 

prediction software implementation. 
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I. INTRODUCTION

Network traffic classification is an important but challenging 
task for network management and security. One of its main 
obstacles has been the proliferation of encryption systems in the 
different layers of the TCP / IP model. This has made ineffective 
the usual classic TCP / IP traffic classification techniques [1], 
[2]. One of the techniques widely used is DPI, based on the 
analysis of the payload of individual packets. This information 
is usually contained in the layer to be encrypted and has 
produced a change in the strategies used for traffic classification. 
In order to solve this problem, ML (Machine Learning) based 
techniques have emerged. These rely on flow statistical features. 

One of the main ML algorithms employed for network 
classification tasks is C5.0. This decision tree type algorithm has 
shown good performance when facing encrypted traffic [3]. 

The application of ML in networks substantially increase the 
need for computation, in order to maintain the high transmission 
rates achieved in current networks without affecting 
transmission latencies. Therefore, it is practically mandatory to 
apply hardware acceleration techniques. MPSoC FPGA based 
platforms applied to network classification purposes have 
demonstrated to achieve significant performance gains in terms 
of time delay and bandwidth [4]. FPGA architecture possibilities 
suite well for decision tree implementations, achieving an 
outperform when compared with multicore platforms [5]. 

C5.0 algorithm-based classification is performed in two 
stages. The first stage generates a decision tree from a previously 
classified (ground truth) data set. The second stage consists of 
doing the predictions using the previous generated decision tree. 
Prediction stage determines the classification time, so it is of 
interest its implementation into a MPSoC FPGA platform in 
order to minimize the total classification time.  

II. METHODOLOGY

This section explains in detail the design flow used in this 
work, represented in Figure 1. 

A. Generating the Classification Model

In order to generate a reference decision tree to implement,
we used a dataset including encrypted network flows from [6]. 
First, a filter is applied to obtain a version which contains the 
instances of the seven applications with more presence and 76 
flow features of each instance, leaving out features that are prone 
to be out of date rapidly such as client port and server IP. 

Using C5.0 R environment, an experiment based on the 
genetic algorithm [7] is designed to analyze the potential of the 
algorithm for the dataset. Then, a sequential forward selection is 
performed in order to identify the features that provide more 
information at the time of classifying. At this step, 4-fold cross 
validation is used to evaluate the results of each combination. As 
the classes have a great imbalance, the Cohen's kappa value [8] 
is used as the quality metric. Once the target features have been 
identified, it is performed a grid search in order to achieve a fine 
adjustment of the algorithm setting parameters. The reference 
classification model is generated using all instances present in 
the data set and the optimal configuration resulting from the 
experiments proposed. 

B. Hardware Acceleration

Once the reference decision tree has been generated, an
initial Python model is designed in an agile manner.  In order to 
achieve a synthesizable model, it is translated into its C++ 
equivalent model. At the hardware design stage, High-Level 
Design Methodology [9] was employed. Compared with 
traditional RTL methodology, more time is spent at higher levels 
of abstraction, where verification times are the fastest and 
productivity gains are the greatest. Xilinx Vivado HLS tool [10] 
allows to develop and verify decision tree algorithm at the C-
level and then synthesizes it into its RTL equivalent model. At 
this stage, a developed Python script is used to parse and gather 
the attributes of each of the nodes present in the decision tree.  

Accelerator performance is optimized using Vivado HLS 
dedicated pragmas. The correct operation of the RTL model is 
checked in an initial verification using the C / RTL co-
simulation functionality of the tool. The next step is the 
integration of the system conforming a platform, including data 
movers between ARM-based Processing System (PS) and 
custom hardware accelerator (PL). As result of the integration 
process the programming bitstream and the hardware 
description file are generated.  
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Figure 1. Design Flow. 

Finally, the system is verified on a prototype using Xilinx 
PYNQ methodology. The embedded software is developed in 
Python. Also, we have used some Integrated Logic Analyzer 
cores for debugging purpose. 

Hardware accelerator performance is compared with its 
equivalent software executed in ARM-based target device 
processing system. SDSoC dedicated libraries are used to 
measure software execution time using device’s independent 
cycle counter. 

III. RESULTS

A. Classification Model

The feature reduction experiment identified a set of six
features that achieve even higher quality models than those 
generated with all of the features present in the dataset.  Besides, 
it manages to reduce generation time and complexity in terms of 
the number of nodes in the decision tree. This emphasizes the 
importance of taking into account the appropriate flow features 
to achieve an effective and efficient model [11]. 

On the other hand, tuning of the algorithm settings shows a 
trade-off between complexity and quality. In the analyzed range, 
reducing the number of nodes in about half penalizes the Cohen's 
kappa metric by 1.3 points. This is especially important when 
performing hardware implementation, since a smaller number of 

nodes will increase accelerator performance and decrease its 
resource utilization. 

In the 4-fold cross validation evaluation, models with a 
number of nodes between 26047 and 55189 obtain a kappa value 
in the range between 70.6% and 71.9%. The 26047 nodes model 
is chosen because it presents the best relationship between 
quality and complexity. Table I shows the precision and recall 
values of the chosen reference model. It is observed that recall 
values are especially penalized for those classes that have fewer 
instances. 

TABLE I.  PRECISION AND RECALL VALUES FOR EACH OF THE SEVEN 

CLASSES OF THE RESPONSE VARIABLE IN THE EVALUATION OF THE C5.0 MODEL 

WITH REDUCTION OF PREDICTOR VARIABLES AND FINE ADJUSTMENT OF 

ALGORITHM SETTING PARAMETERS. 

Metric 

Class 

Amazon Facebook Google Microsoft Skype 
Windows 

Update 
Youtube 

Precision 83.75% 91.94% 87.63% 79.77% 79.39% 90.91% 83.25% 

Recall 75.20% 88.29% 96.72% 63.40% 56.54% 86.86% 50.18% 

B. Hardware Acceleration

Designed hardware accelerator is capable of processing data
from a streaming source in a pipelined fashion, achieving an 
initiation interval of one cycle between each data input. Thus, 
the rate of classifications per second is determined by the 
operating frequency of the block. Latency is committed to the 
product of the number of stages in the pipeline and the clock 
period. FPGA concurrency allows to reduce the classification 
latency by one order of magnitude and increase the rate of 
classifications per second by three orders of magnitude with 
respect to the original software application executed in the 
ARM-based processing system. As shown in Table II, smallest 
decision tree implementation on XC7Z020 device achieves a 
classification rate 1943.7 times higher for the hardware version 
compared to the best software version. 

TABLE II. HW/SW EXECUTION TIME COMPARISON FOR SMALLEST DT 

ON XC7Z020 DEVICE. 

Hardware 

implementation 

Software 

implementation for 

ARM A9 

Original software 

application executed in 

ARM A9 

Latency Throughput Latency Throughput Latency Throughput 

Frequency 160.3 MHz 666 MHz 

Cycles 182 1 8076 8076 8113 8113 

Period 6.24 ns 1.50 ns 1.50 ns 

Results 1135 ns 160.3 MCPS 12114 ns 82.47 kCPS 12169 ns 82.09 kCPS 

kCPS: Kilo Classifications Per Second – MCPS: Mega Classifications Per Second 

For the implementation of the proposed block, three 
classification models of different complexity have been 
analyzed on three different technologies: Artix-7 (XC7Z020), 
Kintex-7 (XC7Z045) and UltraScale+ (XCZU9EG). It is 



observed that the number of utilized memory blocks remains 
constant regardless of the device and the target frequency, with 
the number of nodes that form the tree determining the amount 
of BRAM resources needed (Figure 2).  

Figure 2. BRAM (18kbits) resources utilization in function of implemented 

decision tree complexity in terms of its number of nodes. 

This is a critical factor, since the amount of available 
resources of this type on the target device will limit the 
complexity of the model to be implemented. Regarding the rate 
of classifications, it will be the technology of the target device 
that determines the limit of the frequency of operation, with a 
low impact of the complexity of the model on it, as shown in 
Figure 3 and Figure 4. Figure 5 shows platform implementation 
floorplan for FPGA device. 

Figure 3. Achieved implemented throughput in function of target frequency at 

the high level synthesis stage. 

Figure 4. Achieved implemented throughput in function of.implemented 
decision tree complexity in terms of its number of nodes. 

Figure 5. Viewing implementation placement of  smallest DT on XC7Z020 
@100MHz platform. 

Proposed solution is compared with state-of-the-art decision 

tree hardware implementations attending to factors such as 

achieved frequency, decision tree nodes and FPGA technology. 

Figure of merit is calculated by equation (1), as shown in Table 

III. The main difference between this work and the analyzed

ones lies in the greater complexity of the implemented tree,

which makes it necessary to use BRAM memories instead of

distributed ones, affecting the maximum frequency.

𝐹 =  log10(𝑁𝑜𝑑𝑒𝑠)
𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡
 (1) 
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TABLE III.  STATE-OF-THE-ART DECISION TREE IMPLEMENTATION 

COMPARISON.  

Methodology Technology Nodes 

Achieved 

frequency 

(MHz) F 

D. Tong et al.  [5] RTL 
Virtex 

UltraScale 
200 896.00 981.77 

R. Kułaga & M. 

Gorgoń [12] 
HLS Artix-7 1958 88.00 289.68 

J. R. Struharik [13] RTL Virtex-5 - 251.95 - 

This work HLS Artix-7 26047 172.50 761.72 

This work HLS Kintex-7 55189 252.65 748.77 

This work HLS UltraScale+ 55189 334.78 755.94 

IV. CONCLUSIONS 

C5.0 ML algorithm-based solution proposed in this work can 
classify encrypted network traffic, where flow parameters and 
number of instances of each class will determine the quality of 
the classification model. The design flow used allows the 
implementation to be carried out again in a highly automated 
way when the tree is updated. Regarding its hardware 
acceleration, the technology integrated in the target MPSoC 
FPGA device has a high impact on the maximum classification 
rate, achieving a throughput 3 orders of magnitude higher than 
original C5.0 prediction software.  
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