
Hardware acceleration of encrypted TCP / IP traffic

classification using Machine Learning techniques

Samuel Picallo Martínez, Pedro Pérez Carballo, Antonio Núñez Ordóñez and Sonia Raquel León Martín
IUMA, Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Spain

{spicallo,carballo,nunez,slmartin}@iuma.ulpgc.es

Abstract—Encryption methods adopted in TCP/IP based

communications represent a challenge to traffic classification.

This scenario has encouraged an evolution from classic techniques

towards statistical flow-based approaches. In this work it’s

proposed a solution based on a C5.0 Machine Learning Algorithm,

as well as a hardware acceleration for its prediction stage. The

accelerator is composed of parallel processing nodes capable of

processing data from a streaming source in a pipelined fashion to

use resources more efficiently and increase the achievable

throughput. The results show that this system achieves a

throughput 3 orders of magnitude higher than original C5.0

prediction software implementation.

Keywords- Encrypted traffic classification; Machine Learning;

C5.0; Hardware acceleration; FPGA

I. INTRODUCTION

Network traffic classification is an important but challenging
task for network management and security. One of its main
obstacles has been the proliferation of encryption systems in the
different layers of the TCP / IP model. This has made ineffective
the usual classic TCP / IP traffic classification techniques [1],
[2]. One of the techniques widely used is DPI, based on the
analysis of the payload of individual packets. This information
is usually contained in the layer to be encrypted and has
produced a change in the strategies used for traffic classification.
In order to solve this problem, ML (Machine Learning) based
techniques have emerged. These rely on flow statistical features.

One of the main ML algorithms employed for network
classification tasks is C5.0. This decision tree type algorithm has
shown good performance when facing encrypted traffic [3].

The application of ML in networks substantially increase the
need for computation, in order to maintain the high transmission
rates achieved in current networks without affecting
transmission latencies. Therefore, it is practically mandatory to
apply hardware acceleration techniques. MPSoC FPGA based
platforms applied to network classification purposes have
demonstrated to achieve significant performance gains in terms
of time delay and bandwidth [4]. FPGA architecture possibilities
suite well for decision tree implementations, achieving an
outperform when compared with multicore platforms [5].

C5.0 algorithm-based classification is performed in two
stages. The first stage generates a decision tree from a previously
classified (ground truth) data set. The second stage consists of
doing the predictions using the previous generated decision tree.
Prediction stage determines the classification time, so it is of
interest its implementation into a MPSoC FPGA platform in
order to minimize the total classification time.

II. METHODOLOGY

This section explains in detail the design flow used in this
work, represented in Figure 1.

A. Generating the Classification Model

In order to generate a reference decision tree to implement,
we used a dataset including encrypted network flows from [6].
First, a filter is applied to obtain a version which contains the
instances of the seven applications with more presence and 76
flow features of each instance, leaving out features that are prone
to be out of date rapidly such as client port and server IP.

Using C5.0 R environment, an experiment based on the
genetic algorithm [7] is designed to analyze the potential of the
algorithm for the dataset. Then, a sequential forward selection is
performed in order to identify the features that provide more
information at the time of classifying. At this step, 4-fold cross
validation is used to evaluate the results of each combination. As
the classes have a great imbalance, the Cohen's kappa value [8]
is used as the quality metric. Once the target features have been
identified, it is performed a grid search in order to achieve a fine
adjustment of the algorithm setting parameters. The reference
classification model is generated using all instances present in
the data set and the optimal configuration resulting from the
experiments proposed.

B. Hardware Acceleration

Once the reference decision tree has been generated, an
initial Python model is designed in an agile manner. In order to
achieve a synthesizable model, it is translated into its C++
equivalent model. At the hardware design stage, High-Level
Design Methodology [9] was employed. Compared with
traditional RTL methodology, more time is spent at higher levels
of abstraction, where verification times are the fastest and
productivity gains are the greatest. Xilinx Vivado HLS tool [10]
allows to develop and verify decision tree algorithm at the C-
level and then synthesizes it into its RTL equivalent model. At
this stage, a developed Python script is used to parse and gather
the attributes of each of the nodes present in the decision tree.

Accelerator performance is optimized using Vivado HLS
dedicated pragmas. The correct operation of the RTL model is
checked in an initial verification using the C / RTL co-
simulation functionality of the tool. The next step is the
integration of the system conforming a platform, including data
movers between ARM-based Processing System (PS) and
custom hardware accelerator (PL). As result of the integration
process the programming bitstream and the hardware
description file are generated.

Python Model Design

C++ Translation Vivado HLS

Functional test Vivado HLS

Parse & Gather Tree
Values

R C50

Python

Optimization

Platform Design &
Implementation

Vivado HLS

Vivado Design
Suite

Spyder IDE

Decision Tree Generation R C50

Prototyping PYNQ

HW/SW Comparison SDSoC

Figure 1. Design Flow.

Finally, the system is verified on a prototype using Xilinx
PYNQ methodology. The embedded software is developed in
Python. Also, we have used some Integrated Logic Analyzer
cores for debugging purpose.

Hardware accelerator performance is compared with its
equivalent software executed in ARM-based target device
processing system. SDSoC dedicated libraries are used to
measure software execution time using device’s independent
cycle counter.

III. RESULTS

A. Classification Model

The feature reduction experiment identified a set of six
features that achieve even higher quality models than those
generated with all of the features present in the dataset. Besides,
it manages to reduce generation time and complexity in terms of
the number of nodes in the decision tree. This emphasizes the
importance of taking into account the appropriate flow features
to achieve an effective and efficient model [11].

On the other hand, tuning of the algorithm settings shows a
trade-off between complexity and quality. In the analyzed range,
reducing the number of nodes in about half penalizes the Cohen's
kappa metric by 1.3 points. This is especially important when
performing hardware implementation, since a smaller number of

nodes will increase accelerator performance and decrease its
resource utilization.

In the 4-fold cross validation evaluation, models with a
number of nodes between 26047 and 55189 obtain a kappa value
in the range between 70.6% and 71.9%. The 26047 nodes model
is chosen because it presents the best relationship between
quality and complexity. Table I shows the precision and recall
values of the chosen reference model. It is observed that recall
values are especially penalized for those classes that have fewer
instances.

TABLE I. PRECISION AND RECALL VALUES FOR EACH OF THE SEVEN

CLASSES OF THE RESPONSE VARIABLE IN THE EVALUATION OF THE C5.0 MODEL

WITH REDUCTION OF PREDICTOR VARIABLES AND FINE ADJUSTMENT OF

ALGORITHM SETTING PARAMETERS.

Metric

Class

Amazon Facebook Google Microsoft Skype
Windows

Update
Youtube

Precision 83.75% 91.94% 87.63% 79.77% 79.39% 90.91% 83.25%

Recall 75.20% 88.29% 96.72% 63.40% 56.54% 86.86% 50.18%

B. Hardware Acceleration

Designed hardware accelerator is capable of processing data
from a streaming source in a pipelined fashion, achieving an
initiation interval of one cycle between each data input. Thus,
the rate of classifications per second is determined by the
operating frequency of the block. Latency is committed to the
product of the number of stages in the pipeline and the clock
period. FPGA concurrency allows to reduce the classification
latency by one order of magnitude and increase the rate of
classifications per second by three orders of magnitude with
respect to the original software application executed in the
ARM-based processing system. As shown in Table II, smallest
decision tree implementation on XC7Z020 device achieves a
classification rate 1943.7 times higher for the hardware version
compared to the best software version.

TABLE II. HW/SW EXECUTION TIME COMPARISON FOR SMALLEST DT

ON XC7Z020 DEVICE.

Hardware

implementation

Software

implementation for

ARM A9

Original software

application executed in

ARM A9

Latency Throughput Latency Throughput Latency Throughput

Frequency 160.3 MHz 666 MHz

Cycles 182 1 8076 8076 8113 8113

Period 6.24 ns 1.50 ns 1.50 ns

Results 1135 ns 160.3 MCPS 12114 ns 82.47 kCPS 12169 ns 82.09 kCPS

kCPS: Kilo Classifications Per Second – MCPS: Mega Classifications Per Second

For the implementation of the proposed block, three
classification models of different complexity have been
analyzed on three different technologies: Artix-7 (XC7Z020),
Kintex-7 (XC7Z045) and UltraScale+ (XCZU9EG). It is

observed that the number of utilized memory blocks remains
constant regardless of the device and the target frequency, with
the number of nodes that form the tree determining the amount
of BRAM resources needed (Figure 2).

Figure 2. BRAM (18kbits) resources utilization in function of implemented

decision tree complexity in terms of its number of nodes.

This is a critical factor, since the amount of available
resources of this type on the target device will limit the
complexity of the model to be implemented. Regarding the rate
of classifications, it will be the technology of the target device
that determines the limit of the frequency of operation, with a
low impact of the complexity of the model on it, as shown in
Figure 3 and Figure 4. Figure 5 shows platform implementation
floorplan for FPGA device.

Figure 3. Achieved implemented throughput in function of target frequency at

the high level synthesis stage.

Figure 4. Achieved implemented throughput in function of.implemented
decision tree complexity in terms of its number of nodes.

Figure 5. Viewing implementation placement of smallest DT on XC7Z020
@100MHz platform.

Proposed solution is compared with state-of-the-art decision

tree hardware implementations attending to factors such as

achieved frequency, decision tree nodes and FPGA technology.

Figure of merit is calculated by equation (1), as shown in Table

III. The main difference between this work and the analyzed

ones lies in the greater complexity of the implemented tree,

which makes it necessary to use BRAM memories instead of

distributed ones, affecting the maximum frequency.

𝐹 = log10(𝑁𝑜𝑑𝑒𝑠)
𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡
 (1)

100

200

300

400

500

600

700

20000 30000 40000 50000 60000

B
R

A
M

 (
1

8
 k

b
it

s)
 r

es
o
u

rc
es

Decision tree nodes

90.00

140.00

190.00

240.00

290.00

340.00

390.00

100.00 150.00 200.00 250.00 300.00 350.00

A
ch

ie
v
ed

 t
h

ro
u

g
h

p
u

t
(M

H
z)

Target frequency in high level synthesis (MHz)

XCZU9EG 47455 nodes
XC7Z045 26047 nodes
XC7Z045 55189 nodes

XCZU9EG 26047 nodes
XCZU9EG 55189 nodes
XC7Z045 47455 nodes
XC7Z020 26047 nodes

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

25000 30000 35000 40000 45000 50000 55000

A
ch

ie
v
ed

 t
h

ro
u

g
h

p
u

t
(M

H
z)

Decision tree nodes

XCZU9EG @ 333,33MHz XC7Z045 @ 333,33MHz
XCZU9EG @ 200,00MHz XC7Z045 @ 200,00MHz
XC7Z020 @ 333,33MHz XC7Z020 @ 200,00MHz
XCZU9EG @ 100,00MHz XC7Z045 @ 100,00MHz
XC7Z020 @ 100,00MHz

TABLE III. STATE-OF-THE-ART DECISION TREE IMPLEMENTATION

COMPARISON.

Methodology Technology Nodes

Achieved

frequency

(MHz) F

D. Tong et al. [5] RTL
Virtex

UltraScale
200 896.00 981.77

R. Kułaga & M.

Gorgoń [12]
HLS Artix-7 1958 88.00 289.68

J. R. Struharik [13] RTL Virtex-5 - 251.95 -

This work HLS Artix-7 26047 172.50 761.72

This work HLS Kintex-7 55189 252.65 748.77

This work HLS UltraScale+ 55189 334.78 755.94

IV. CONCLUSIONS

C5.0 ML algorithm-based solution proposed in this work can
classify encrypted network traffic, where flow parameters and
number of instances of each class will determine the quality of
the classification model. The design flow used allows the
implementation to be carried out again in a highly automated
way when the tree is updated. Regarding its hardware
acceleration, the technology integrated in the target MPSoC
FPGA device has a high impact on the maximum classification
rate, achieving a throughput 3 orders of magnitude higher than
original C5.0 prediction software.

REFERENCES

[1] B. Ma, H. Zhang, Y. Guo, Z. Liu, and Y. Zeng, “A Summary of

Traffic Identification Method Depended on Machine Learning,” in

2018 International Conference on Sensor Networks and Signal

Processing (SNSP), 2018, pp. 469–474.

[2] P. Wang, X. Chen, F. Ye, and Z. Sun, “A Survey of Techniques for

Mobile Service Encrypted Traffic Classification Using Deep

Learning,” IEEE Access, vol. 7, pp. 54024–54033, 2019.

[3] Z. Aouini, A. Kortebi, Y. Ghamri-Doudane, and I. L. L. Cherif,

“Early classification of residential networks traffic using C5.0

machine learning algorithm,” in 2018 Wireless Days (WD), 2018, pp.

46–53.

[4] A. Dominguez, P. P. Carballo, and A. Nunez, “Programmable SoC

platform for deep packet inspection using enhanced Boyer-Moore

algorithm,” in 2017 12th International Symposium on Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC), 2017, pp. 1–8.

[5] D. Tong, Y. R. Qu, and V. K. Prasanna, “Accelerating Decision Tree

Based Traffic Classification on FPGA and Multicore Platforms,”

IEEE Transactions on Parallel and Distributed Systems, vol. 28, no.

11, pp. 3046–3059, Nov. 2017.

[6] J. S. Rojas, Á. R. Gallón, and J. C. Corrales, “Personalized Service

Degradation Policies on OTT Applications Based on the

Consumption Behavior of Users,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), vol. 10962 LNCS, 2018, pp.

543–557.

[7] L. Scrucca, “On Some Extensions to GA Package: Hybrid

Optimisation, Parallelisation and Islands Evolution,” The R Journal,

vol. 9, no. 1, p. 187, 2017.

[8] J. Cohen, “A Coefficient of Agreement for Nominal Scales,”

Educational and Psychological Measurement, vol. 20, no. 1, pp. 37–

46, Apr. 1960.

[9] Xilinx Inc., “UltraFast High Level Productivity Design Methodology

Guide,” 2019.

[10] Xilinx Inc., “Vivado Design Suite User Guide. High-Level

Synthesis,” 2019.

[11] H. Oudah, B. Ghita, and T. Bakhshi, “A Novel Features Set for

Internet Traffic Classification using Burstiness,” in Proceedings of

the 5th International Conference on Information Systems Security

and Privacy, 2019, pp. 397–404.

[12] R. Kułaga and M. Gorgoń, “FPGA Implementation of Decision Trees

and Tree Ensembles for Character Recognition in Vivado Hls,”

Image Processing & Communications, vol. 19, no. 2–3, pp. 71–82,

Sep. 2014.

[13] J. R. Struharik, “Implementing decision trees in hardware,” SISY

2011 - 9th International Symposium on Intelligent Systems and

Informatics, Proceedings, pp. 41–46, 2011.

