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Abstract— This paper comprises the design and 

implementation of a MapReduce worker for Big Data applications 

on a Xilinx Zynq ZC706 using a High-Level synthesis design flow 

with C/C++ algorithmic descriptions. We implement a word count 

application such that we can estimate the main performance 

parameters, such as utilization, throughput and latency. We 

conclude the design of a DMA based MR worker with a maximum 

throughput of 𝟓𝟎0 Mbps considering data splitting and merging 

on the FPGA and 𝟖𝟔𝟎 Mbps without, for maximum key sample of 

8 KB. 
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I.  INTRODUCTION 

We use devices and systems that take advantage of data 

based infrastructure such as phones, tablets and PC’s that 

process vast amounts of information. Examples for large 

datasets are streams of social networks, search engines, e-mail 

exchange systems, sensor networks, monitorization systems for 

public transport and infrastructure, vehicles such as airplanes, 

etc… [1], [2]. With such amounts of data, in order to provide a 

tolerable Quality of Service (QoS), it is crucial to understand 

the underlying challenges that are part of modern networks and 

it’s data processing systems and techniques, as global IP traffic 

grows larger by the day [3]. 

The term Big Data is understood as the traffic of 

information that flows in immeasurable quantities between the 

cited sources. Ultimately, it is collected, structured, organized 

and indexed for its further analysis, and as the elements that 

compose the datasets have no value on their own, we use 

sophisticated algorithms, comprised in Data Mining to find 

recurring patterns and conceive useful information [1]. 

A classic approach to data processing is the MapReduce 

(MR) programming model, as developed by Google [4]. The 

MR framework, processes vast amounts of data by applying 

simple applications using a high amount of processing units 

[4]–[7]. The algorithm itself comprises two main phases: a Map 

phase where data is translated into useful Key-Value (KV) 

pairs, and a Reduce phase where the KV pairs are merged using 

a given criteria. Typical applications of a MR model include 

Matrix Multiplication, String Matching, Word Count, RGB 

Histogram, Machine Learning, Linear Regression, PCA, 

Kmeans, etc.… [5]–[7].  

A MapReduce model may itself be implemented on 

heterogeneous platforms, as a result of requiring low-power, 

high-throughput applications in High-Performance Computing 

(HPC) environments. In order to address this need, recent 

research and developments propose a combination between 

General Purpose Processors (GPP) and Field-Programmable 

Gate Arrays (FPGA) on a single System on a Chip (SoC) [7]–

[13]. By combining these elements on a single HPC SoC, 

solutions acquire the flexibility of a GPP with the high-

performance and low-power response of a FPGA. 

This article presents the design and implementation of a 

MapReduce for Big Data applications by using a High-Level 

Synthesis design flow on a high-end Xilinx All Programmable 

(AP) SoC. The employed board is the Zynq ZC706 Evaluation 

Board, which integrates a XC7Z045 device, which we deem 

enough to integrate the proposed platform. The main 

application under which the hardware accelerated core is 

designed, verified and validated is a simple Word Count 

application. 

II. ON DESIGN METHODOLOGY AND THE XILINX ZYNQ AP SOC  

It is evident that the designs performance is deeply related 

to its design methodology, from modelling, to synthesis and 

implementation of the final design. For this reason, we use the 

Xilinx Vivado High-Level Design Methodology, which allows 

for C/C++ algorithmic descriptions to be converted into a 

hardware IP for its later use in a hardware accelerating platform, 

a process we call High-Level Synthesis (HLS) [14], [15]. 

The underlying IP blocks for our design are modelled using 

C/C++ and a HLS approach. The chosen environment is the 

Vivado HLS tool to perform the Register Transfer Level (RTL) 

synthesis and the logic synthesis (implementation) [16]. The 

verification of the high-level design and the validation of the 

RTL design is made using Cadence’s NCSim, as we consider it 

to be a more intuitive and flexible tool than the native Vivado 

Simulator environment. 

The employed board is the Xilinx Zynq ZC706 evaluation 

board, which integrates a Kintex-7 derived FPGA, the 

XC7Z045-FFG900I device, containing 218,600 Look Up 

Tables (LUT’s), 437,200 Flip Flops (FF’s), 1,090 18 KB Block 

Ram’s (BRAM’s) (19.2 Mb) and 900 Digital Signal Processing 

(DSP) slices. The Processing System (PS) works at a maximum 

frequency of 800 MHz, while the Programmable Logic (PL) 

works up to a maximum of 250 MHz. 



 

By using Xilinx provided products and design 

environments, we shorten valuable design and delivery time of 

the hardware platform. It also enables the designer to easily 

create hardware accelerating cores by using the Vivado IP 

integrator, create a bare-metal application and verify its 

behavior by using the Xilinx SDK environment.  

III. MAPREDUCE ACCELERATOR CORE 

The MR hardware accelerator core is proposed as a basic 

MR worker, which integrates four main data processing phases: 

Split, Map, Reduce and Merge. By developing such a 

framework as a hard-IP, we create a framework whose 

application can be substituted with any other desired 

functionality. For this work, we use a simple Word Count 

application. 

In terms of architecture, this design uses a Direct Memory 

Access (DMA) that connects the PS side’s memory directly to 

the PL’s custom logic, passing files from source to destination 

and recovering the result through AMBA AXI4 Stream 

interfaces (AXIS). For our purposes, we defined a MR worker 

by using 1 Split IP, 8 Map-Reduce pairs and 1 Merge IP. The 

AXIS interfaces have a width of 1 byte, since the underlying 

IP’s do byte-per-byte processing and we reduce therefore 

latency derived from data type conversions. The proposed 

hardware accelerator core can be found in Figure I, using FIFOs 

to separate the individual IP blocks and create a dataflow 

friendly solution. 

A. Split 

The splitters main task is to divide the input stream into 

multiple streams that are sent to the available Map-Reduce 

lines, without destroying valuable data in the process. 

B. Map 

The Map IP concerns the core of the application. For our 

application, which is Word Count, the Map IP reads the input 

stream and composes Key-Value pairs, being the Key the read 

English word and the Value it’s repetition factor. A common 

Map function returns KV pairs with their values as 1, since we 

haven’t starting merging data.  

C. Reduce 

The Reduce function takes a KV input, compares the Key 

to the ones in memory, and merges it with the existing key in 

the registry, by increasing its value by 1. This IP requires the 

stream to be stored in memory, an approach that throttles 

greatly the throughput of the whole system. To overcome much 

of the introduced latency, we opted for introducing an ‘index 

remembering’ solution, that does not require reading the entire 

memory, but only ‘legal indexes’ that are allowed for any given 

KV pair. 

For our purposes, we modelled the Reduce IP block such 

that it registers the second character of any given Key (e.g. for 

Charlie, the uppercase letter ‘H’) and the index in which the KV 

is appended or merged. If a new KV pair enters the Reduce IP, 

only the indexes that share that second alphabetic character is 

iterated. 1 letter keys are treated as ‘Z’ character cases, as this 

case of keys is underused. 

 
Figure I. Hardware accelerator architecture. The DMA is 

managed by the systems PS’ and sends and recovers data from the 

hardware accelerator. 

Once the entirety of the Key-Value pairs has been read, the 

memory is emptied by sending its content to the next IP block. 

D. Merge 

The merging function does not adhere to any application, as 

its sole task is combining the incoming AXI streams into one 

output stream that is sent back to memory through the DMA. 

While the Split IP must swap interfaces after a certain 

number of bytes, to keep the Map stage working and not idle, 

the Merge IP is connected to the Reduce output and can 

therefore send data once it reads the first byte out of the FIFO. 

This means, since the Reduce stage stores the entirety of the 

data in memory, once valuable data is sent, the Merge IP is 

allowed to copy the entirety of the data to its output stream until 

finished, as no IP block remains idle while doing so. 

IV. MODELLING CONSIDERATIONS 

A. Key-Value stream protocol 

Using AXIS solutions allows for easy IP block integration. 

However, it is crucial to develop a Key-Value based stream 

protocol such that the MR worker can handle the data. By a 

Kev-Value stream protocol, we understand a mean of 

transmitting data such that the IP blocks can identify the keys 

and values within it. 

The Map IP block is the first that requires a KV specific 

protocol, as it translates character strings into KV pairs. For this 

task, we considered a KV streaming protocol. When a new key 

is found, it is emitted to the Reduce stage, followed by a 

horizontal TAB character (ASCII code 9) to mark the end of a 

key. Once the entire stream is processed, the Reduce IP emits 

the output data by sending a key followed by a TAB character 

and two bytes representing its value, as shown in Figure II.  

For our streaming protocol, we conclude that for every TAB 

character on the stream reading end of the IP, we write a TAB 

character and two bytes of data. This results in a maximum 

stream size of 2 times the size of the input, which for 1 KB input 

depth results in 2 KB output.  

 

 
Figure II. Key-Value streaming protocol.  



 

B. AMBA AXI4 Stream driver 

We had multiple experiences using AXI Stream interfaces 

through C/C++ based HLS approaches. What stands out is the 

accessibility regarding the AXI Stream fields, which enables 

easy AXIS handling but carries inconsistencies within the 

protocol, as in other works we experienced IP block stalling due 

to bad stream handling. For this reason, we developed a simple 

C/C++ AXIS driver that handles the signals accordingly, as 

defined by [17]. This includes a correct handling of the 

TDATA, TLAST and TKEEP fields, such that standard Xilinx 

IP do not stall or loop indefinitely due to bad AXIS treatment 

from preceding IP’s.   

C. Platform architecture characteristcs 

The designed MapReduce worker uses a 1 byte width AXIS 

connecting all the designed IP blocks. The accelerator has a 

maximum input data size of 8 KB. Although it is true that 

ideally the hardware accelerator can accept an indefinite 

amount of data as long as it is being read out of the FIFO blocks, 

the Reduce IP requires memory storage to happen, which 

therefore reduces the maximum capacity of the MR worker. We 

chose the Map-Reduce pairs to allow for a maximum of 1 KB, 

resulting in 8 KB of input data. 

We decided to use a DMA based architecture, which means 

that the input data must be declared previously in memory and 

passed on to the accelerating core using the PS. We use the 

same DMA core to receive the resulting data. Both the 

transmission (TX) and reception (RX) streams are handled 

using interrupts in favor of polling, reducing therefore the 

latency derived from data transfer and handling.   

D. IP block modelling 

1) Split 

Since we’re using a Word Count application, the Split IP 

segments the data into 8 out-stream’s. The splitting criteria is 

having copied a minimum of 25 bytes to the output, as well as 

having finished reading a complete English word before 

swapping to the next output interface. By doing so, the 

architecture permits the next phase to start working and 

reducing idle periods. 

2) Map 

The Map stage transforms the input data into valuable keys. 

This IP copies only the alphabetic characters from the input 

stream to the output, separating them with a TAB character. 

3) Reduce 

The Reduce IP concerns the merging of Key-Value pairs, 

based on their Key. An incoming Key is either appended to the 

KV list that is stored in memory, or merged with its existing 

Key by increasing its value by 1. To reduce latency derived 

from iterating the KV registry, the Reduce IP is only allowed to 

read the indexes that share a common characteristic with the 

current incoming Key, which for our case is the second letter. 

Once all the keys of the incoming stream are handled, the 

Reduce IP emits the entirety of its memory by using the defined 

KV protocol.  

4) Merge 

The Merge IP block reads the FIFOs located after the Reduce 

stage and merges the multiple streams into one output stream. 

If the FIFO contains valuable data, the Merge IP will read the 

entirety of the stream until the last element is found. While the 

Split IP concerns itself with swapping interfaces to establish a 

dataflow friendly behavioral, this stage does not need to, since 

finding valuable data in a FIFO means that the entirety of the 

Reduce result for that given line is available. 

 

5) Platform capacity 

As already mentioned, we decided to use up to 8 Map-

Reduce pairs or lines after the Split IP to divide evenly the input 

stream and process the data in concurrently. Each line has a 

capacity of 1 KB, as limited by the memory of the Reduce IP 

block. Since we’re using the KV protocol, we’re outputting 2 

KB for every 1 KB of data, and therefore the platform has an 

input capacity of 8 KB, outputting a maximum of 16 KB. 

6) Implementation results 

The complete utilization report is shown in TABLE I. 

 
TABLE I. Hardware platform utilization (%) 

IP Slices LUT LUTRAM FF BRAM 

Platform 31.20 20.84 30.63 6.88 32.05 

Split 0.84 0.59 0.00 0.29 0.00 

Map 0.78 0.47 0.00 0.26 0.00 

Reduce 25.88 17.34 30.36 4.75 19.08 

Merge 0.26 0.15 0.00 0.08 0.00 

 

We conclude that the limiting factor for using a MapReduce 

worker is the Block RAM (BRAM) usage of the Reduce IP, 

which totals to 32.05 %, with the LUTRAM coming second 

with a 30.63 % utilization factor. We synthesize the overall 

utilization results, as well as the individual utilization for the 

multiple MR stages in Figure III. 

We are also interested in calculating the Utilization Factor 

(UF) of our design, since, as explained in [18], the Zynq ZC706 

holds a maximum of 4 LUT’s and 8 FF’s per slice. By 

calculating that factor, we are able to estimate the efficiency of 

the slice usage that is inferred by the HLS tool. The associated 

formulas are shown in (1) and (2). 

 

UFLUT = 
N. of LUT's

N. of Slices
 

(1) 

UFLUT = 
N. of FF's

N. of Slices
 

(2) 

The UF calculations are synthesized in TABLE II, where 

we compare our  results with Carballo’s work done in [19].  

Our utilization factor is on par with the overall UFLUT for 

similar solutions on Zynq devices, as well as a Xilinx Virtex-5. 

None of the presented designs have a high UFFF, something we 

can attribute to the HLS design flow and synthesis process, as 

well as our own design flow which does require more LUT 

usage over the overall FF usage. 

 



 

 
Figure III. Hardware platform utilization report. 

 TABLE II. SLICES UTILIZATION FACTIOR COMPARISON 

Design Architecture 
HLS 

Tool 
FPGA Device 

Utilization 

Factor 

UFLUT UFFF 

0 Platform + IP 
Vivado 

HLS 

Xilinx Zynq 

7z020 
2.91 2.90 

1 IP CtoS 
Xilinx Zynq 
7z045 

3.32 1.64 

2 Platform + IP 
Vivado 

HLS 

Xilinx Zynq 

7z045 
2.29 3.05 

3 IP 
Vivado 

HLS 

Xilinx Zynq 

7z045 
2.12 2.79 

4 Platform + IP CtoS 
Xilinx Virtex-5 
FX 130t 

2.85 2.09 

MR 

Worker 
Platform + IP 

Vivado 

HLS 

Xilinx Zynq 

7z045 
2.67 1.77 

V. VALIDATION PHASE 

To validate our design, we have developed a simple 

application that sends previously in-memory allocated data 

through the DMA and to the accelerator core. The result is 

collected by the same DMA and send back to the PS, where the 

KV protocol is unrolled. The given data can be either presented 

or stored back into memory. 

A. Measurements setup 

Our main objective in the validation phase is to validate the 

proper functionality of the hardware platform as a MR worker 

and to produce latency and throughput estimates. To do so, we 

used 5 samples (or keys) with a maximum size of 8 KB. Latency 

itself is measured using two methods: 

 The worker latency from the Split to the Merge block. 

This method corresponds to a DMA per interruptions 

setup (DPIS). 

 The line latency or delay associated to the Map-Reduce 

stage. We call this setup Reduce Per Polling (RPP) as 

we poll the Reduce stage to find out whether the MR 

worker has finished the task of processing. 

B. Latency and throughput measurements 

The obtained latencies and throughputs are shown in Figure 

IV and Figure V. 

 
Figure IV. Mean system latency comparison. 

 
Figure V. System throughput. 

We estimated the platforms parameters by calculating the 

mean over all the results for either of the measuring methods. 

The throughput measurements have a logarithmic behaviour, 

since the MR worker consumes a minimal latency, regardless 

of the input key size. We call this latency the dnode delay, as it 

is the minimal node delay. This value is of 8 μs, 3.2 μs of which 

belong to the RPP latency. 

For a maximum sample size of 8 KB, the worker delay rises 

to 127 μs while the Map-Reduce pair lines have a 75 μs delay. 

We achieve a maximum throughput of ~860 Mbps for the RPP 

setup, and ~500 Mbps. 

For our architecture, the test keys are previously allocated 

into memory, although it is possible to provide them to the 

ZC706 board through a Secure Digital (SD) card and 

automatize the working process. 

VI. CONCLUSION 

In this document, we present the design and implementation 

of a MapReduce worker platform that responds to a Big Data 

application on a Xilinx Zynq AP SoC. The main objective of 

this work is the design of the needed acceleration kernels 

required in hardware and in software, to implement the final 

MR solution. 

The advantages of implementing the MapReduce worker on 

FPGA produces a high-throughput solution that uses the 

hardware acceleration kernels to increase the overall system’s 

performance. In our case, we produce a MR worker that 

integrates a word count solution with a maximum throughput of 

860 Mbps considering hardware data splitting and merging, 

and 500 Mbps in the Map-Reduce phase. 
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